INDUCTOSYN TO ABSOLUTE ENCODER CONVERTER with SSI INTERFACE

RESOLVER TO DITIAL INTERFACE

> Hiedenhain, Farrand, G\&L and Mitsubishi Linear and Rotary Inductosyn Scales
> 25 Bit SSI (Synchronous Serial Interface with Fault status bit)
> Makes Inductosyn Scales as easy to use as encoders
> Jumper Selectable quadrature counts 1000, 1024, 2000, 2048, 4000, 4096, 8000, and 8192 A-quad-B with Index and complements
> Jumper Selectable Excitation Frequency including 2.5, 5.0, and 10 kHz

With the VEGA 2790514 converter you can have both the precision of an Inductosyn and the digital simplicity of a SSI interface. The 2790514 can be used with almost any Inductosyn style scale. The INDEX/MARKER pulse (Channel Z) will occur once per transducer cycle at the zero degree position.

2790514 SPECIFICATIONS	
Excitation 2 Phase:	2.5, 5, or 10 kHz @ 3.6 vpp
Resolver Input:	0.8 to 18 vpp
Power Requirements:	5 vDC @ 2.5 Amps
Drive Capacity:	2.25 Amps
Mechanical:	$2.825 \times 4.75 \times 1.00$
Accuracy:	+/- 3 arc minutes

CONVERTER ACCURACY AND TRACKING RATE

The tracking rate is a function of the excitation frequency and quadrature counts. With a 2.5 kHz excitation and 4000 quadrature counts the tracking rate would be 9,600 rpm. With a 10.0 kHz excitation and 4000 quadrature counts the tracking rate would be $38,400 \mathrm{rpm}$. Reducing the counts will increase the tracking rate proportionately.

SSI (Symchronous Serial interface)

The 2790514 Inductosyn to Digital Converter has a differential SSI interface for applications requiring serial interface. This makes the 2790514 IDEAL for applications where absolute multi-turn inductosyn feedback is required.

PRICING AND DELIVERY

Model	Description
2790514	Inductosyn to SSI
2790DIN	DIN Rail Kit
2790CK1	Solder Connector Kit
2790CK2	Crimp Connector Kit
2789500	2.5 kHz Pre-Amp
2789503	10 kHz Pre-Amp
2789DIN	DIN Rail Kit for Pre-Am

P1 INDUCTOSTN CONNECTOR

PIN\#	FUNCTION	COLOR
1	Sine HI	Red
2	Sine LO	Black
3	Sine Shield	SHLD
4	Cosine HI	Yellow
5	Cosine LO	Blue
6	Cosine Shield	SHLD
7	Feedback HI	Red/Wht
8	Feedback LO	Yel/Wht
9	Feedback Shield	SHLD
10	+5 vDC (*External)	N/A

P2 POWER GONNEGTOR

PIN\#	FUNCTION	COLOR
$* 1$	+5 vDC	Red
$* 2$	DC Ground	Black

P3 INDUCTOSVN CONNECTOR

PIN\#	FUNCTION	COLOR
1	DC Ground	Black
2	Channel A+	Grey
3	Channel B+	Yellow
4	Channel Z+	Blue
5	SSI Data-	Grn/BIk
6	SSI Data+	Grn/Wht
7	DC Ground	Black
8	Fault (TTL)	Blu/Red
9	DC Ground	Black
10	+5 vDC (*External)	Red
11	Reserved	N/A
12	Reserved	N/A
13	DC Ground	Black
14	Channel A-	Violet
15	Channel B-	Orange
16	Channel Z-	Green
17	+5 vDC (*External)	Red
18	SSI Counter Reset	Red/Wht
19	!Fault (Configurable)	Red/BIk
20	!Fault (TTL)	Blu/BIk
21	SSI Clock-	Yel/Wht
22	SSI Clock+	Yel/BIk
23	Reserved	N/A
24	Reserved	N/A
25	Active Pull-Up vDC	Blu/Wht

FUNCTION COLOR
Channel A+ Grey
Channel B+ Yellow
Channel Z+ Blue
SSI Data-
SSI Data+
C Ground

DC Ground
+5 vDC (*External)
Reserved
DC Ground
Channel A
Channel B-
Channel Z-
+5 vDC (*External)
SSI Counter Reset
!Fault (Configurable)
(TTL)
SSI Clock
Reserved

Active Pull-Up vDC
Blu/Wht

QUADRATURE OUTPUT

The VEGA 2790 series of converter boards come standard with RS-422-A differential drivers and provide up to 40 mA into a 100 ohm differential load. These outputs are also TTL compatible.

The quadrature (Channel A+ and Channel A-, Channel B+ and Channel B-) is the default configuration of the 2790 series of boards. A count is considered to occur whenever there is a transition in either the Channel A or Channel B output signals. The phase relationship of the two signals indicates the direction of motion as shown in the figure below.

QUADRATURE OUTPUT FORMAT

SSI (Synchronous Serial interface) OUTPUT

The 2790 board's SSI interface provides serial transmission of absolute position data in binary form from the resolver based on a timed clock pulse train from the host device. The SSI differential interface provides a high degree of noise immunity. For each sequential clock pulse from the host device, the 2790 board transmits one data bit from the shift registers of the tracking circuit.

Grounding Pin 18 of P3 will reset the SSI counter to the absolute position from the NULL reference position of the resolver.

SSI TIMING DIAGRAM

1) The 2790 SSI Format is set up for 25 bit transfers.
2) The 2790 uses the least significant 13 bits for positional data (8192 counts per cycle), and the next 11 most significant bits are used for the turn counter. The most significant bit is the Fault status bit and will be set to 1 to indicate a fault has occurred.
3) Data is available less than 100 ns after the down clock transition and well ahead of the up clock transition at 1 mhz clock frequency. The data should be sampled at the up transition of the clock.
4) The 2790 is normally interrogated 1000 times $/ \mathrm{sec}$.
5) The Galil motion control board setup string would be:
$S I X=1,25,13,-1<-10>1$.
6) The Galil command MG_SIX will sample the Fault status bit.

FREQUENCY SELECTION

The 2790 series of converters provide selectable excitation frequencies via SWB1 jumpers B1 and B2. Most Resolver applications are tuned to 2.5 kHZ .

The 2790 also provides jumper selection of the active filter network for the return signal to provide the maximum noise immunity at the selected frequency. For the typical Resolver application operating at 2.5 kHZ both J 10 and J 11 jumpers should be installed. For excitation frequencies above 2.5 kHZ both jumpers should be removed. For low level signal condition at $2.5 \mathrm{kHZ} \mathrm{J10}$ can be removed to achieve a x4 internal gain.

DECIMAL/BINARY SELECTION

The 2790 converter card provides both decimal and binary counting modes. Installing SWB1 jumper B3 selects binary counting mode to provide selection between $256,512,1024$, and 2048 line counts. Removing jumper B3 selects the decimal counting mode to provide selection between 250 , 500,1000 , and 2000 line counts.

CHANNEL Z NORMALIINVERTED SELECTION

The 2790 converter board provides jumper selectable inversion of the Z Channel (Index) for systems requiring an active low signal. Jumper J2 pins 2-3 select the channel Z Normal mode and pins 1-2 select the Channel Z Inverted mode.

LINE COUNT SELECTION

The 2790 converter board provides 8 jumper selectable line counts. Binary counts are selected by installing SWB1 jumper B3 and installing the appropriate combination of jumpers B4 and B5. Most systems using encoder style feedback are set to the $x 4$ quadrature counting mode so that the effective quadratue counts are 4 times greater than the physical line count of the encoder.

DIFFERENTIAL FAULT SIGNAL SET-UP (J4)
Installing a jumper on J4 pins 1-2 enables the RS-422-A differential drivers and provide up to 40 mA into a 100 ohm differential load. These outputs are also TTL compatible and are located on pins 8 and 20 of the P3 connector.

TRI-STATE A-QUAD-B FAULT SIGNAL SET-UP (J4)

 Install a jumper on J4 pins 2-3. The 2790 board will TriState the A-Quad-B signals during a Fault condition. The Differential Fault signals are also Tri-Stated and are NOT a valid interface with this set-up. This interface will allow an immediate Fault sense by equipment with loss of signal detection.
ACTIVE PULL-UP FAULT SIGNAL SET-UP

This interface is a fail-safe design so that in a loss of power condition the fault signal on Pin 19 of the P3 connector will be 0 vDC . Pin 19 will be the source voltage with no fault present and can drive up to 600 mA . The source voltage for the Pull-up must be provided on Pin 25 of the P3 connector and can range from $5-40 \mathrm{vDC}$.

FUNCTION	B1	B2	B3	B4	B5	B6	B7	B8	B9	Quadrature Counts
2.5 kHZ	0	0								
5.0 kHZ	1	0								
10.0 kHZ	0	1								
Reserved	1	1								
Decimal Count			0							
Binary Count			1							
250/256 Lines				0	0					1000 Decimal/1024 Binary
500/512 Lines				1	0					2000 Decimal/4048 Binary
1000/1024 Lines				0	1					4000 Decimal/4096 Binary
2000/2048 Lines				1	1					8000 Decimal/8192 Binary
Default						0	0	0	0	
Reserved						1				
Reserved							1			
Reserved								1		
Reserved									1	
1 Indicates installe	mper		- Figure 1.0 Indicates default setting							

1) Install the 2790 board as described in the application drawing 2790514.
2) Select the fault signal conditioning method by setting the JB4 jumper as described in the JUMPER SETTINGS section based on the application requirements.
3) Select the Z Channel inverted option by setting J2 to short pins 1 and 2. The DEFAULT is non-inverting and having pins 2 and 3 shorted on J 2 .
4) Select the excitation frequency by JB1-2 of SWB1 (see jumper table Fig. 1.0). 10 kHZ is the DEFAULT setting with JB1 removed and JB2 installed.
5) Select the passive filter setting by J11 for the corresponding frequency setting. The DEFAULT setting is for a board set to 10 kHZ and J 11 is removed.
6) Select the counting style of Binary or Decimal by JB3 of SWB1 (see jumper table Fig. 1.0). Binary is the DEFAULT setting for SSI applications with the jumper installed.
7) Select the line count per revolution by setting JB4-5 of SWB1 (see jumper table Fig. 1.0). 1024 lines per revolution (8192 quadrature counts per cycle) is the DEFAULT setting with JB4 and JB5 installed.
8) Jumpers JB6-8 are reserved for the 2790501 and should be removed.
9) Adjust the Pre-Amp to achieve 2.5 volts peak to peak on the SIG test point. If you are using the VEGA PreAmp MN\#2789500 turn the pre-amps Gain pot so that the MID led is illuminated and the HI and LO led's are extinguished.
10) J 10 selects in the input course gain range and allows for interface to a broad range of resolver transformation ratios. Installing a jumper on pins 1 and 2 sets the gain to 0.25 (gain of $1 / 4$). Installing a jumper on pins 2 and 3 sets the gain to 1.0 (Default) and removing the jumpers completely sets the gain to 4.0.
11) Turn the gain potentiometer fully counter-clockwise. Then turn the gain potentiometer clock-wise until the MID LED comes on. The signal return on "ST1" test point should now be 3.8 volts peak to peak. Phase the position loop if necessary by reversing the Sine HI and Sine LO wires to reverse the count direction. At this point the basic set-up is complete and the position loop can now be closed. Set the position loop gain of the servo system and then continue to Step 12.
12) After the position loop has been closed the phase balance of the 2790 board can be adjusted. To adjust the phase balance of the 2790 board, observe the excitation return on the "ST1" test point. Adjust the oscilloscope to 100 mvDC per division and offset the signal so that just the peak of the signal is visible. Jog the axis at 30% of its feedrate. If the phase is unbalanced the peak of the sine wave will bounce and become blurred. Adjust the balance pot (BAL) on the 2790 to achieve 20 mvDC or less bounce.

LED STATUS INDICATORS

CHA = Channel A State Indicator
CHB = Channel B State Indicator
CHZ = Channel Z (Index/Marker) Indicator
PWR = Power Status Indicator
FLT = Loss of Signal Indicator
MID = Return Signal Proper Indicator
HSG = High Signal Indicator

TESTPOINTS

```
GND = Analog Ground
PA+ = Sine HI (3.6 vDC Peak to Peak)
PA- = Sine LO (3.6 vDC Peak to Peak)
PB+ = Cosine HI (3.6 vDC Peak to Peak)
PB- = Cosine LO (3.6 vDC Peak to Peak)
SIG = Signal Return (0.8-18.0 vDC Peak to Peak)
ST1 = Stage 1 Signal (3.8 vDC Peak to Peak)
SCL = Tracking Clock
```

SYMPTOM	CHECKS	SOLUTION
No Power LED	Check +5 vDC	+5 vDC Present \rightarrow Board Failure - Replace board
Fault LED (Low Signal) Continuous	Remove power and ohm between "PA+" and "PA-" note value. Ohm between "PB+" and "PB-" note value.	If resistance values are less than 3.0 ohms Check for shorts between "PA-" and "PA+" as well as ground. Check for shorts between "PB-" and "PB+" as well as ground.
	Check "PA+" and "PB+"test point for 3.6 volts peak to peak sine excitation	Signal not present \rightarrow Board Failure - Replace board
	Check "PA-" and "PB-"test point for 3.6 volts peak to peak sine excitation	Signal not present \rightarrow Board Failure - Replace board
	Check "ST1" test point for 3.8 volts peak to peak	Repeat Step 9-11 of the Inductosyn Set-Up Procedure
Fault LED (Low Signal) Intermittent	Check "PA+" and "PB+"test point for 3.6 volts peak to peak sine excitation	Signal not present \rightarrow Board Failure - Replace board
	Check "PA-" and "PB-"test point for 3.6 volts peak to peak sine excitation	Signal not present \rightarrow Board Failure - Replace board
	Remove power and ohm between "PA+" and "PA-" note value. Ohm between "PB+" and "PB-" not value.	If resistance values differ by more than 0.5 ohms of each other \rightarrow Check Inductosyn connections - Replace slider or cables
	Remove power and ohm between "PA+" and "PA-" note value. Ohm between "PB+" and "PB-" note value.	If resistance values are less than 3.0 ohms Check for shorts between "PA-" and "PA+" as well as ground. Check for shorts between "PB-" and "PB+" as well as ground.
Cyclic Error	Check "ST1" test point for bounce	Repeat step 12 of the Inductosyn Set-Up Procedure
	Check "ST1" test point for bounce	Repeat step 12 of the Inductosyn Set-Up Procedure
	Remove power and ohm between "PA+" and "PA-" note value. Ohm between "PB+" and "PB-" note value.	If resistance values are less than 3.0 ohms Check for shorts between "PA-" and "PA+" as well as ground. Check for shorts between "PB-" and "PB+" as well as ground.
	Remove power and ohm between "PA+" and "PA-" note value. Ohm between "PB+" and "PB-" note value.	If resistance values are differ by more than 0.5 ohms of each other \rightarrow Check Inductosyn connections - Replace slider or cables
	Check "PA+" and "PA-"test point for 3.6 volts peak to peak sine excitation	Signal not present \rightarrow Board Failure - Replace board
	Check "PB+" and "PB-"test point for 3.6 volts peak to peak sine excitation	Signal not present \rightarrow Board Failure - Replace board
HSG LED (High Signal) Continuous	Check "ST1" test point for 3.8 volts peak to peak	Repeat Step 9-11 of the Inductosyn Set-Up Procedure
HSG LED (High Signal) Intermittent	Check "ST1" test point for 3.8 volts peak to peak	Follow procedures described in the Fault LED (Low Signal) Intermittent section
MID LED (Signal Midpoint) Continuous	Signal Proper	No Problem... Life is Good
MID LED (Signal Midpoint) Intermittent	Check "ST1" test point for bounce	Repeat step 12 of the Inductosyn Set-Up Procedure
Counting Polarity is Reversed	None	Swapping the Sine HI with the Sine LO wires will reverse the counting direction
No SSI Data is transferred	None	Swap the Clock+ and Clock- wires

INCH DIMENSIONS

Connector Kits and Mounting Options

KIT \#2790CK1 Includes:
(1) DB-25 Male Solder Cup Connector
(1) DB-25 Plastic Hood and Hardware
(4) \#4-40 Male to Female Stand-Offs

KIT \#2790CK2 Includes:
(1) DB-25 Male Crimp Style Connector
(25) Gold Male Crimp Pins
(1) DB-25 Plastic Hood and Hardware

REPAIR AND TECHNICAL SUPPORT

1270 Souter Bivd.
Troy, MI 48083
(248) 585-3600

Monday-Friday 8:00am to 6:00pm Eastern

KIT \#2790DIN
Includes:
(1) DIN Rail Mount for 2790 boards

