The VLP-100 is a member of the VLP series of Electric EncodersTM a product line based on Netzer Precision Position Sensor proprietary technology. EE products are characterized by features that enable unparalleled performance:

- Low profile (<7 mm)
- Hollow shaft (Stator / Rotor)
- No bearings or other contact elements
- High resolution and unparalleled precision
- High tolerance to temperature extremes, shock, moisture, EMI, RFI and magnetic fields
- Very low weight
- Holistic signal generation
- Digital interfaces for absolute position

General

Angular resolution	18-20 bit
Nominal position accuracy	±0.010°
Extended accuracy & nominal position	±0.006°
Maximum operational speed	4,000 rpm
Measurement range	Single turn, unlimited
Rotation direction	Adjustable CW/CCW*

^{*} Default same direction from bottom side of the encoder

Mechanical

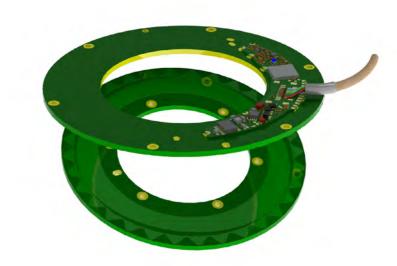
Allowable mounting eccentricity	±0.15 mm
Allowable axial mounting tolerance	±0.15 mm
Rotor inertia	17,928 gr · mm²
Total weight	42 gr
Outer Ø /Inner Ø/ Height	100 / 48 / 7 mm
Material (stator, rotor)	FR4
Nominal air gap (stator, rotor)	1 ±0.15 mm

The holistic structure of the Electric Encoder[™] makes it unique: Its output reading is the averaged outcome of the entire area of the rotor. This feature allows the EE a tolerant mechanical mounting and to deliver outstanding precision.

Due to the absence of components such as ball bearings, flexible couplers, glass discs, light sources and detectors along with very low power consumption enables the EE to deliver virtually failure-free performance in nearly all types of conditions.

The internally shielded, VLP-100 operated EE includes an electric field generator, a field receiver, sinusoidal-shaped dielectric rotor, and processing electronics.

The EE output is a digital serial synchronous with absolute position single turn.

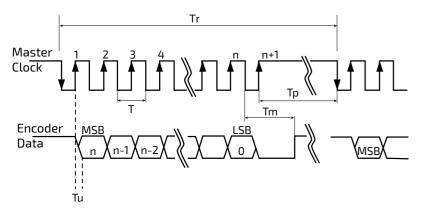

This combination of high precision, low profile and, low weight has made Netzer precision encoders highly reliable and particularly well suited to a wide variety of industrial automation applications.

Electrical

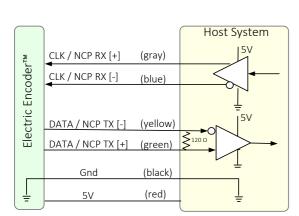
Supply voltage	5V ± 5%
Current consumption	<90 mA
Interconnection	Cable (standard 250mm)

Environmental

EMC	IEC 6100-6-2, IEC 6100-6-4
Operating temperature	-40°C to +85°C
Storage temperature	-40°C to +125°C
Relative humidity	98% Non condensing
Shock endurance	100 g for 11 ms
Vibration endurance	20 g 10 – 2000 Hz
Protection	IP 40



Digital SSi Interface


ABSOLUTE POSITION

ROTARY ELECTRIC ENCODER™

Synchronous Serial Interface (SSi) is a point to point serial interface standard between a master (e.g. controller) and a slave (e.g. sensor) for digital data transmission.

	Description	Recommendations
n	Total number of data bits	12 - 20
Т	Clock period	
f= 1/T	Clock frequency	0.1 - 5.0 MHz
Tu	Bit update time	90 nsec
Тр	Pause time	26 - ∞ µsec
Tm	Monoflop time	>25 µsec
Tr	Time between 2 adjacent requests	Tr > n*T+26 μsec
fr=1/Tr	Data request frequency	

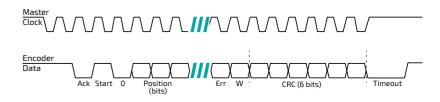
SSi / BiSS output signal parameters

Output code	Binary
Serial output	Differential RS-422
Clock	Differential RS-422
Clock frequency	0.1 ÷ 5.0 MHz
Position update rate	35 kHz (Optional - up to 375 kHz)

SSi / BiSS interface wires color code

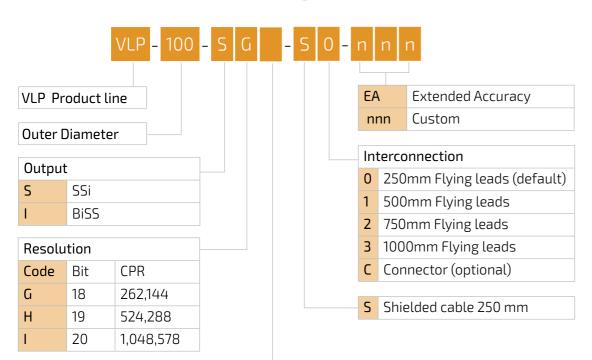
Clock + / NCP RX +	Grey	Charl	
Clock - / NCP RX -	Blue	Clock	
Data - / NCP TX -	Yellow	Data	
Data + / NCP TX +	Green	Data	
GND	Black	Ground	
+5V	Red	Power supply	

Software tools: (SSi / BiSS - C)


Advanced calibration and monitoring options are available by using the factory supplied Electric Encoder Explorer software, This facilitates proper mechanical mounting, offsets calibration and advanced signal monitoring.

Digital BiSS-C Interface

BiSS - C Interface is unidirectional serial synchronous protocol for digital data transmission where the Encoder acts as "slave" transmits data according to "Master" clock. The BiSS protocol is designed in B mode and C mode (continuous mode). The BiSS-C interface as the SSi is based on RS-422 standards.

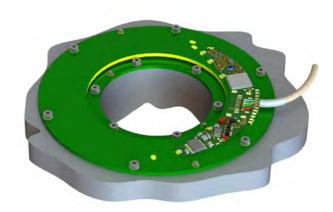


Bit #		Description	Default	Length
27	Ack	Period during which the encoder calculates the absolute position, one clock cycle	0	1/clock
26	Start	Encoder signal for "start" data transmit	1	1 bit
25	"0"	"start" bit follower	0	1 bit
824	AP	Absolute Position encoder data		
7	Error	Error (amplitude levels)	1	1 bit
6	Warn.	Warning (non active)	1	1 bit
05	CRC	The CRC polynomial for position, error and warning data is: $x^6 + x^1 + x^0$. It is transmitted MSB first and inverted. The start bit and "0" bit are omitted from the CRC calculation.		6 bits
	Timeout	Elapse between the sequential "start"request cycle's.		25 μs

BIT (Build In Test): optional

None BIT

Ordering Code



Cable Information

Cable: 30 AWG twisted pair (3)

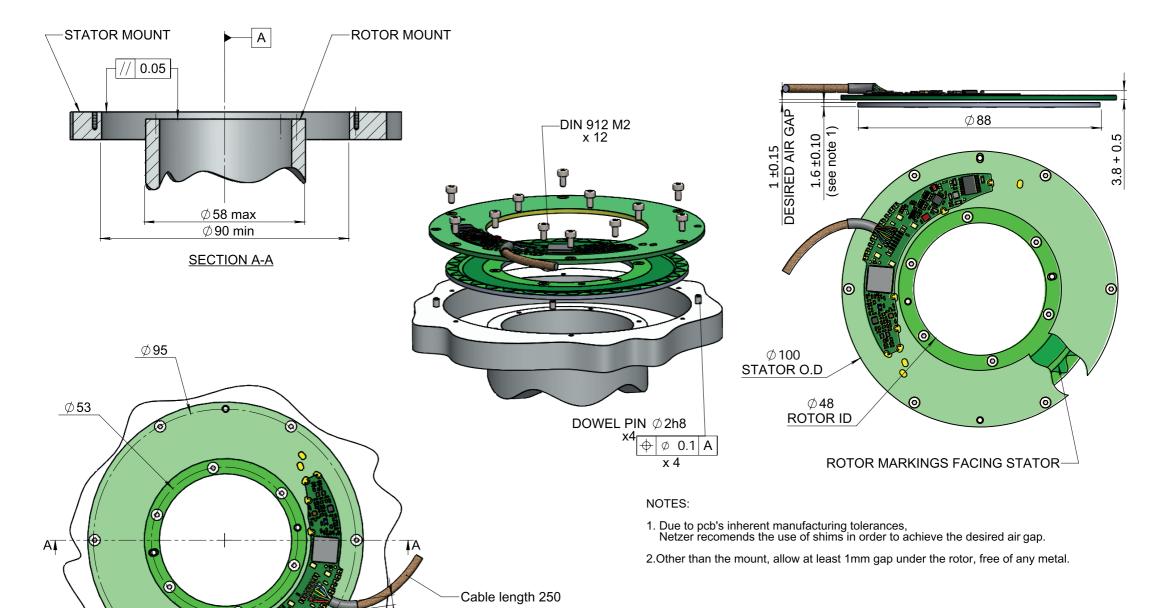
(30 AWG 25/0.05 tinned copper, Insulation: ETFE Ø 0.12-0.15 to Ø 0.6 \pm 0.05 OD) Temperature rating: -60° to +150° C Braided shield: Thinned copper braided 95% min. coverage Jacket: 0.4-0.5 silicon rubber Ø3.45 \pm 0.2 OD

Pair#	Color	30 AWG twisted pairs (3)	30 AWG single
A1-A2	Red / Black	0.015-	insulated wire
A3-A4	Gray / Blue	Braided shield	
A5-A6	Green / Yellow	Jacket 0.4-0.5 mm	
		Ø 3.45 ±0.2 mm	Ø0.6±0.05 mm

Related Documents

VLP-100 User Manual: Mechanical, Electrical and calibration setup.

Optional Accessories


Demonstration Kit

DKIT-VLP-100-SG-SO - with SSi interface

DKIT-VLP-100-IG-S0 - with BiSS interface

The demo-kit includes: mounted encoder on rotary jig, and RS-422 to USB converter.

ICD

\$\phi_{3.50 \pm 0.30}\$

Unless Otherwise Specified

'	
Dimensions are in: mm	Surface finish: N6
Linear tolerances	
0.5-4.9: ±0.05 mm	5-30: ±0.1 mm
31-120: ±0.15 mm	121-400: ±0.2 mm