The DS-130 is a member of the DS series of Electric Encoders[™] a product line based on Netzer Precision Motion Sensor proprietary technology. EE products are characterized by features that enable unparalleled performance:

- Low profile (10 mm)
- Hollow, floating shaft
- No bearings or other contact elements
- High resolution and precision
- High tolerance to temperature extremes, shock, moisture, EMI, RFI and Magnetic fields
- Very low weight
- Holistic signal generation
- Digital interfaces for absolute position

General

Angular resolution ¹	19 bits ; 524,288 CPR
Maximum tested static error ²	≤ 0.010°
Maximum operational speed	750 rpm
Measurement range	Unlimited rotation
Power On - Max. operational speed	3.3 RPM, <=20°/sec
Build In Test BIT	Optional

Mechanical

Allowable mounting eccentricity	±0.1 mm
Allowable rotor axial motion	±0.1 mm
Rotor inertia	12.378 gr · mm ²
Total weight	65 gr
Outer Ø /Inner Ø/ Height	130 / 90 / 10 mm
Material (stator, rotor)	Ultem™ polymer

The holistic structure of the Electric Encoder[™] makes it unique: Its output reading is the averaged outcome of the entire area of the rotor. This feature allows the EE a tolerant mechanical mounting and to deliver outstanding precision.

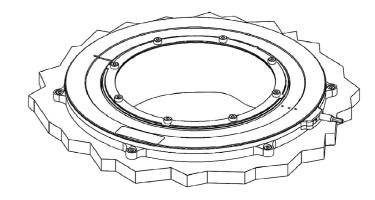
Due to the absence of components such as ball bearings, flexible couplers, glass discs, light sources and detectors along with very low power consumption enables the EE to deliver virtually failure-free performance in nearly all types of conditions.

The internally shielded, DC- operated EE includes an electric field generator, a field receiver, sinusoidal-shaped dielectric rotor, and processing electronics.

The EE output is a digital serial synchronous with absolute position single turn.

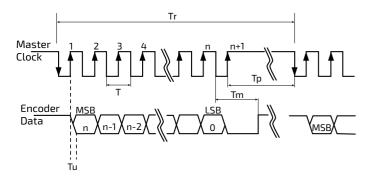
This combination of high precision, low profile and, low weight has made Netzer Precision encoders highly reliable and particularly well suited to a wide variety of industrial automation and harsh environment applications.

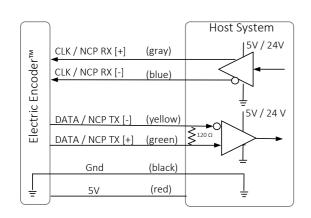
Electrical


Supply voltage	5V ± 5%
Interconnection	Shielded cable
Cable length	1,500 mm MAX

Environmental

EMC	IEC 6100-6-2, IEC 6100-6-4	
Operating temperature	-40°C to +85°C	
Relative humidity	98% Non condensing	
Shock endurance	100 g for 11 ms	
Vibration endurance	20 g 10 – 2000 Hz	
Protection	IP 40	





Digital SSi Interface

Synchronous Serial Interface (SSI) is a point to point serial interface standard between a master (e.g. controller) and a slave (e.g. sensor) for digital data transmission.

	Description	Recommendations			
n	Total number of data bits 12 - 22				
Т	Clock period				
f= 1/T Clock frequency 0.5 - 2.0 MHz					
Tu	200 nsec				
Тр	Pause time	26 - ∞ µsec			
Tm	Monoflop time	>25 µsec			
Tr Time between 2 adjacent requests Tr > n*T+26		Tr > n*T+26 μsec			
fr=1/Tr	Data request frequency				

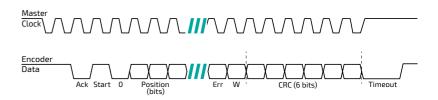
SSi / BiSS output signal parameters

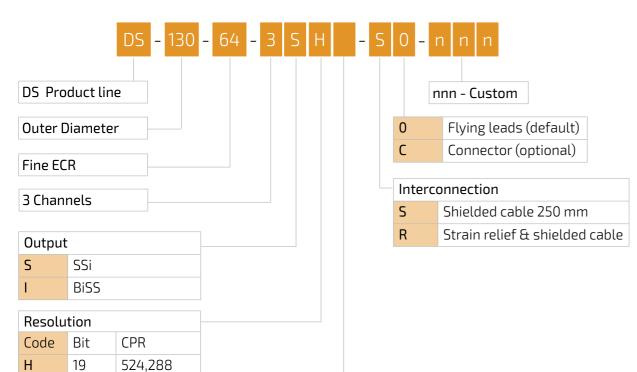
Output code	Binary
Serial output	Differential RS-422
Clock	Differential RS-422
Clock Frequency	0.5 ÷ 2.0 MHz
Position update rate	30 KHz

SSi / BiSS interface wires color code

Clock +	Grey	Clock
Clock -	Blue	CIOCK
Data -	Yellow	- Data
Data +	Green	Data
GND	Black	Ground
+5V	Red	Power supply

Software tools: (SSi / BiSS - C)


Advanced calibration and monitoring options are available by using the factory supplied **Electric Encoder Explorer software**, This facilitates proper mechanical mounting, offsets calibration and advanced signal monitoring.

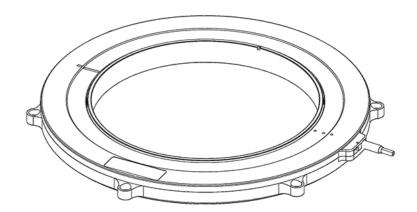

Digital BiSS-C Interface

BiSS - C Interface is unidirectional serial synchronous protocol for digital data transmission where the Encoder acts as "slave" transmits data according to "Master" clock. The BiSS protocol is designed in B mode and C mode (continuous mode) .The BiSS-C interface as the SSi is based on RS-422 standards.

Bit #		Description	Default	Length
29	Ack	Period during which the encoder calculates the absolute position, one clock cycle	0	1/clock
28	Start	Encoder signal for "start" data transmit	1	1 bit
27	"0"	"start" bit follower	0	1 bit
826	AP	Absolute Position encoder data		
7	Error	Error (BIT optional)	1	1 bit
6	Warn.	Warning (non active)	1	1 bit
05 CRC		The CRC polynomial for position, error and warning data is: $x^6 + x^1 + x^0$. It is transmitted MSB first and inverted. The start bit and "0" bit are omitted from the CRC calculation.		6 bits
	Timeout	Elapse between the sequential "start"request cycle's.		25 μs

Ordering Code

Cable Information


Netzer Cat No.: CB 00014 Cable: 30 AWG twisted pair (3):

2 (30 AWG 25/44 tinned copper, Insulation: PFE Ø 0.15 to Ø 0.6 \pm 0.05 OD)

Temperature rating: -60 to +150 Deg C

Braided shield: Thinned copper braided 95% min. coverage Jacket: $0.44 \, \text{silicon rubber}$ (NFA 11-A1) $\emptyset 3.45 \, \pm 0.2 \, \text{OD}$

Pair#	Color	30 AWG twisted pairs (3)	
A1-A2	Red / Black	1 6 1 8001	017→
A3-A4	Gray / Blue	Braided shield	
A5-A6	Green / Yellow	Jacket 0.44 mm	
		Ø 3.45 ±0.2 mm	

Related documents

DS-90 User Manual: mechanical, electrical and calibration setup

Optional Accessories

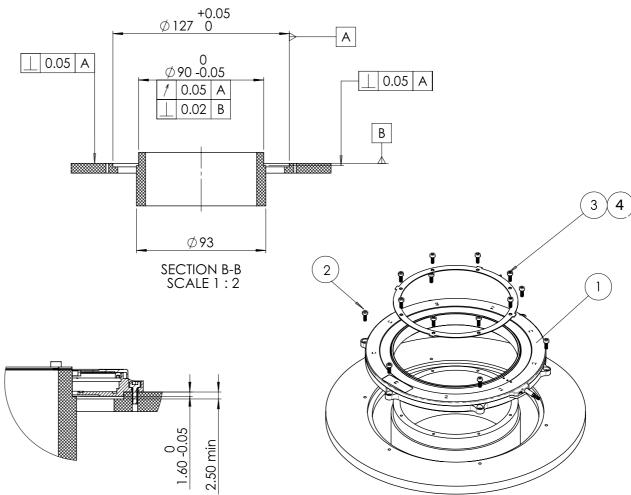
Demonstration Kit

DKIT-DS-130-64-3SH-SO: Includes ,mounted encoder on rotary jig ,and RS-422 to USB converter.

BIT (Build In Test): optional

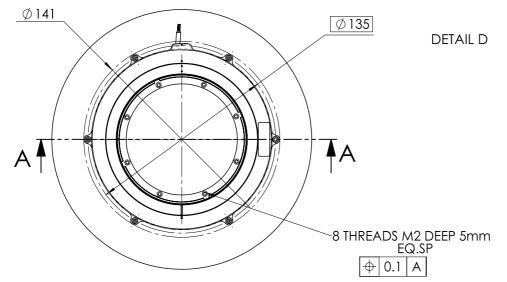
None

BIT


В

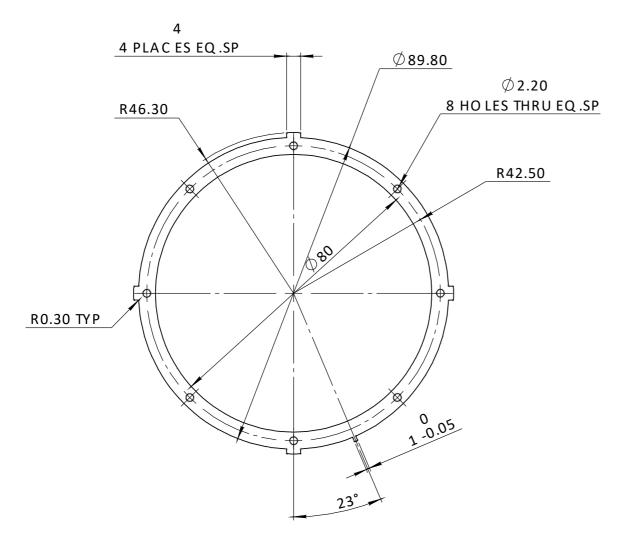
We recommend to use 3M glue - Scotch-Weld™ Epoxy

Adhesive EC-2216 B/A.


Adhesive EC-2216 B/A.

UNLESS OTHERWISE SPECIFIED

Dimentions are in: mm Surface Finish: N6 Linear Tolerances: ±0.5 deg All Chamfer: 0.1 mm x 45°



Shaft - End installation (step)

No	Part			Description	QTY.
1	DS-130-64-3SH	Included		DS-130 encoder	1
2	EAPK008	Optional	Kit	Kit, 3 M2x6	2
3	MA-DS130-004	Optional	Shaft End installation kit	MP-00016 DIN 912 M2 X 8 Alen	1
4			IIIStatialiOfi Kit	DS-130 wave spring	1

Critical dimensions marked with "*"

Spring - Shaft - End Installation

Notes

- 1) For any incompatibility with the model or missing dimension, please refer to Netzer for clarification.
 2) Burrs are not allowed
 3) Packing must prevent physical damage during process storage and shipment