

MACCON GmbH Kübachstr.9 D-81543 München Tel +49-89-651220(0)-21 Fax +49-89-655217

Quantum Series

Size 17, 23, 34 and 56 Brushless Servo Motors

Frameless and Housed

Engineering Guide

Quantum Series Selection Guide												
Model	Cont. Stall Torque Nm	Max Rated ‡Max Cont Torque PowerDi Nm Watt @		Diameter RPM	Housed Length mm	Housing Diameter mm	Frameless Length mm	Frameless mm				
QB01700	0.0	0.65	68	12500	41.7	54.0	35.81	34.0				
QB01701	0.15	1.19	113	10000	41.7	66.7	35.81	46.7				
QB01702	0.23	1.87	167	10000	41.7	79.4	35.81	59.4				
QB01703	0.30	2.41	211	10000	41.7	92.1	35.81	72.1				
QB02300	0.36	3.9	202	8000	58.4	71.1	55.37	41.6				
QB02301	0.68	7.9	311	7000	58.4	90.1	55.37	60.7				
QB02302	0.98	11.8	411	6000	58.4	109.2	55.37	79.7				
QB02303	1.28	15.6	528	6000	58.4	128.2	55.37	98.8				
QB03400	0.81	5.3	410	7000	86.9	76.5	81.28	41.6				
QB03401	1.57	10.8	607	6000	96.9	95.5	81.28	60.7				
QB03402	2.32	16.2	846	5000	96.9	114.6	81.28	79.7				
QB03403	3.03	20.9	1072	5000	96.9	133.6	81.28	98.8				
QB05600	4.29	22.3	1282	4000	NA	NA	127.00	62.7				
QB05601	8.03	57.2	1920	3000	NA	NA	127.00	88.1				
QB05602	11.1	85.1	2471	3000	NA	NA	127.00	113.5				
QB05603	14.1	113.5	2875	3000	NA	NA	127.00	138.9				

[‡] The maximum continuous output power may not be available on all versions due to winding constraints. QS versions can attain higher output power levels. Please see page 18 for speed-torque curves.

OB Series **Product Description**

Applications

Quantum Motors find application in a wide range of systems demanding compact, highly dynamic, and clean operating motors such as:

- Semiconductor manufacturing equipment and other clean room applications
- Disk drive media processing systems
- High reliability pumps and control systems including medical applications
- · Coordinate measuring machines
- · Large capacity tape and disk storage and retrieval systems
- · Precision grinding/machining sytems for contact and eye glasses lenses
- · Electronics pick and place automated assembly systems
- Machine tool axis drives

Quantum Series Brushless DC Motors

Quantum Series motors are designed for operation in highly dynamic velocity or position servo systems where compact size and low weight are system requirements. Quantum motors have been electro-mechanically optimized for high output torques, low cogging torque, and minimal cost through advanced engineering and a commitment to high volume production methods and extensive parts

Frameless Quantum Motor QB03400

QB03400 housed motor with encoder

Quantum Series Features

- Cont. stall torques 10 oz.in. to 10.4 ft.lb. (0.07 to 2.61 Nm)
- High torque to size and inertia ratios
- Housed frame sizes 17, 23, 34 and 56 frame sizes
- NEMA standard flange mounting
- · Provision for foot mounting is integral to the housing
- Frameless versions available for tight integration into systems eliminating coupling torsional problems and resulting in a short axial length
- Both housed or frameless configurations with integrated Hall Effects sensors for commutation
- Winding and mechanical changes easily undertaken
- Wide range of mechanical options including brakes, resolvers, encoders, connections, and IP Rated sealing
- · Stainless steel shafts standard on housed motors with long life bearings
- Rugged housing design that can easily be sealed to operate in tough application environments
- · Coated magnets for corrosion protection
- Hall effect sensors with separate trigger magnets are spaced away from stator coils for greater electrical noise and heat immunity
- Quantum motors are compatible with six step (trapezoidal) or sine wave commutation
- · Private labeling is available to qualified OEMs and resellers

Electrical and Mechanical Data

Size Constants	SYMBOL	Unit	a	B0170	0	C	B0170)1	C	2B0170)2	QB01703			
Max Cont. Stall Torque Max Rated Torque, 25% Motor Constant, Electrical Time Constant Mechanical Time Constant Thermal Resistance Viscous Damping Max Cogging Torque	T _c T _R T _M T _M TPR F _i T _F	Nm Nm/√W msec msec °C/Watt Nm/rpm Nm		0.08 0.65 0.023 0.38 2.03 4.7 5.3E-7 7E-3			0.15 1.19 0.035 0.52 1.67 3.29 1.1E-6 1.1E-2			0.23 1.87 0.048 0.59 1.33 2.58 1.6E-6 1.3E-2			0.30 2.41 0.057 0.65 1.26 2.14 2.2E-6 1.6E-2		
Mechanical Constants															
Frameless Motor Inertia Frameless Motor Weight Housed Motor Inertia Housed Motor Weight Number of Poles	J _M Wt J _M Wt	Kg.m ² Kg Kg.m ² Kg -		1.0E-7 0.07 1.1E-6 0.22 6			2.0E-6 0.14 2.1E-6 0.34 6			3.1E-6 0.21 3.1E-6 0.47 6			4.1E-6 0.27 4.2E-6 0.58 6		
Winding Constar	nts		А	в	с	А	в	с	А	в	с	А	в	с	
Design Voltage Peak Torque Peak Current Torque Constant,±10% No Load Speed BEMF Constant, ±10% Terminal Resistance, ±12% Terminal Inductance, ±30%	V _P T _P K _T S _{NL} K _B R _M	Volts Nm Amperes Nm/A RPM Rad/s V/KRPM V/rad/s Ohms mH	24 0.65 36 0.018 12775 1337 1.88 0.018 0.63 0.24	40 0.65 24 0.027 14068 1473 2.84 0.027 1.51 0.55	130 0.65 15 0.043 29095 3046 4.46 0.043 3.76 1.36	24 1.15 44 0.026 8874 829 2.70 0.026 0.53 0.28	40 1.19 35 0.034 11287 1182 3.54 0.034 1.08 0.48	130 1.19 14 0.080 15488 1621 8.39 0.080 6.44 2.69	24 1.55 42 0.036 6318 661 3.79 0.036 0.56 0.33	40 1.87 41 0.045 8555 895 4.67 0.045 0.86 0.50	130 1.87 16 0.114 10851 11.98 0.114 5.62 3.29	24 1.82 42 0.043 5302 555 4.52 0.043 0.56 0.37	40 2.41 49 0.049 7855 822 5.09 0.049 0.72 0.47	130 2.41 20 0.119 10444 1093 12.44 0.119 4.43 2.81	

Speed/Torque Curves

Continuous Duty Speed/Torque Curves for 100°C Temperature rise.

The continuous duty speed/torque curves provide a guide to the operational capability of the motors. Continuous operation at a loadpoint on or under the curve limits the temperature rise of the motor to 100°C. Although the duration of acceleration or deceleration periods should be checked, the RMS speed and torque combination should also lie on or under the continuous duty curve. The curves assume housed motors mounted to a nominal size of aluminum heatsink in a 25°C ambient environment and still air cooling. Higher ambient temperatures will generally decrease the continuous duty capability of a motor. With increased heatsink areas or improved cooling such as forced air or water, the continuous duty capability of the motor may be increased. However, for most applications, the practical maximum motor temperature is 150°C with Hall effect

Electrical and Mechanical Data

SYMBOL	Unit	QB02300			C	QB02301			B0230)2	QB02303			
$\begin{array}{c} T_{c} \\ T_{R} \\ K_{M} \\ T_{E} \\ T_{M} \\ TPR \\ F_{i} \\ T_{F} \end{array}$	Nm Nm/VW msec msec °C/Watt Nm/rpm Nm		0.36 3.94 0.076 0.94 1.30 2.79 2.5E-6 0.018			0.68 7.9 0.121 1.14 1.03 2.00 5.3E-6 0.029			0.98 11.8 0.155 1.22 0.94 1.59 7.9E-6 0.036			1.28 15.6 0.181 1.25 0.92 1.26 1.1E-5 0.044		
Mechanical Constants														
J _M Wt J _M Wt	Kg.m ² Kg Kg.m ² Kg -		7.6E-6 0.25 7.9E-6 0.68 6			1.5E-5 0.48 1.5E-5 0.92 6			2.3E-5 0.71 2.3E-5 1.17 6			3.0E-5 0.95 3.0E-5 1.42 6		
nts		А	в	с	А	в	с	А	в	с	А	в	с	
ν _Ρ Τ _Ρ Γ _Κ τ S _{NL} Κ _Β ℝ	Volts Nm Amperes Nm/A RPM Rad/s V/KRPM V/rad/s Ohms mH	24 3.64 95 0.038 5994 627 4.0 0.038 0.25 0.23	40 3.94 81 0.048 7888 826 5.0 0.048 0.40 0.38	130 3.94 32 0.121 10254 1073 12.6 0.121 2.53 2.37	24 4.65 61 0.076 3014 315 7.9 0.076 0.39 0.45	40 6.00 62 0.096 3981 416 10.0 0.096 0.63 0.72	130 7.81 40 0.192 6470 677 20.0 0.192 2.55 2.88	24 7.63 100 0.076 3014 315 7.9 0.076 0.24 0.29	40 9.86 104 0.095 4035 422 9.9 0.095 0.38 0.46	130 11.72 56 0.208 5860 624 21.8 0.208 2.00 2.22	24 7.82 77 0.101 2269 237 10.5 0.101 0.31 0.39	40 10.34 81 0.126 3026 316 13.2 0.126 0.48 0.60	130 15.62 70 0.222 5588 585 23.2 0.222 1.61 1.87	
	Symbol T _c T _R T _E T _F T _e T _F Stants J _M Wt - J _M Wt - V _P T _P K _T S _{NL} K _B R _M L _M	$\begin{tabular}{ c c c c } \hline SYMBOL & UNIT \\ \hline T_{R} & Nm \\ T_{R} & Nm/W \\ \hline T_{E} & msec \\ TPR & °C/Watt \\ \hline T_{F} & Nm/rpm \\ \hline T_{F} & Nm/rpm \\ \hline Stants \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\$	SYMBOL UNIT Q T _c Nm Transact T _R Nm Nm/VW T _m msec Transact T _R Nm/VW Transact T _R Nm/VW Transact T _R Nm/V Transact T _R Nm/V Transact T _R Nm/V Nm Stants J Kg.m ² V _P Volts Z4 T _P Nm 364 J _P Nm/A 0.038 S _{NL} RPM 5994 R _M V/rad/s 0.038 R _M Ohms 0.25 J _M mH 0.23	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{tabular}{ c c c c c } \hline SYMBOL UNIT & OB02300 \\ \hline T_c & Nm & 0.36 \\ T_R & Nm & 3.94 \\ K_M & Nm/W & 0.076 \\ T_E & msec & 0.94 \\ T_M & msec & 1.30 \\ TPR & °C/Watt & 2.79 \\ F_i & Nm/rpm & 2.5E-6 \\ T_F & Nm/rpm & 2.5E-6 \\ Vt & Kg & 0.25 \\ J_u & Kg.m^2 & 7.6E-6 \\ Wt & Kg & 0.68 \\ - & - & 6 \\ \hline \end{tabular}$	SYMBOL UNIT QB02300 Q T _c Nm 0.36 0.36 0.36 T _R Nm 3.94 0.36 0.36 T _R Signal 0.36 0.36 0.36 T _R Signal 0.076 0.94 0.76 T _M msec 0.30 0.76 0.94 T _M msec 1.30 0.79 0.76 Fi Nm/rpm 2.5E-6 0.94 0.018 Stants J _M Kg.m ² 7.6E-6 0.018 Stants - - 6 - Mt Kg 0.025 0.40 1.0 J _M Kg.m ² 7.6E-6 0.038 - Wt Kg 0.025 0.40 1.0 J _M Kg.m ² 0.68 - - Stants 24 40 130 24 T _P Nm 3.64 3.94 3.04	SYMBOL UNIT QB02300 QB02300 T _c Nm 0.36 0.68 T _R Nm 3.94 7.9 K _M Nm/VW 0.076 0.121 T _e msec 0.94 1.14 T _w msec 1.30 1.03 TPR °C/Watt 2.79 2.00 F _i Nm/rpm 2.5E-6 5.3E-6 T _F Nm 0.018 0.029 Stants 0.25 0.48 J _M Kg.m ² 7.9E-6 1.5E-5 Wt Kg 0.68 0.92 - - 6 6 Ots A B C A V _p Volts 24 40 130 T _p Nm 3.64 3.94 3.014 3981 K _g 277 266 10.62 6 6 K _g 0.038 0.048 0.121 0.0	SYMBOL UNIT OB02300 QB02301 T _c Nm 0.36 0.68 T _R Nm 3.94 7.9 K _u Nm/W 0.076 0.121 T _e msec 0.94 1.14 T _u msec 1.30 1.03 TPR °C/Watt 2.79 2.00 F _i Nm/rpm 2.5E-6 5.3E-6 T _r Nm 0.018 0.029 Stants 0.25 0.48 J _M Kg.m ² 7.6E-6 1.5E-5 J _M Kg.m ² 0.68 0.92 - - 6 6 Ots A B C A V _p Volts 3.64 3.94 3.94 I _p Amperes 95 81 32 61 62 V _p Volts 3.64 3.94 3.014 3.014 3.014 3.014 3.014 3.014 </th <th>SYMBOL UNIT QB02300 QB02301 Q T_c Nm 0.36 0.68 T_R Nm 3.94 7.9 K_M Nm/W 0.076 0.121 T_E msec 0.94 1.14 T_M msec 1.30 1.03 TFR Nm/rpm 2.5E-6 5.3E-6 Fi Nm/rpm 2.5E-6 5.3E-6 T_F Nm 0.018 0.029 Stants J_M Kg.m² 7.6E-6 1.5E-5 Wt Kg 0.68 0.92 - - 6 6 Ots A B C A B C V_p Volts 24 40 130 24 16 T_p Nm 364 3.94 3014 366 0.076</th> <th>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</th> <th>SYMBOL UNIT QB02300 QB02301 QB02302 T_c Nm 0.36 0.68 0.98 T_R Nm 3.94 7.9 11.8 Ku Nm/WW 0.076 0.121 0.155 T_E msec 0.94 1.14 1.22 T_u msec 1.30 1.03 0.94 TPR °C/Watt 2.79 2.00 1.59 F_i Nm/rpm 2.5E-6 5.3E-6 7.9E-6 T_F Nm 0.018 0.029 0.036 Stants 7.9E-6 1.5E-5 2.3E-5 Wt Kg m² 0.038 0.48 0.92 1.17 - - 6 6 6 6 6 Vp</th> <th>SYMBOL UNIT QB02300 QB02301 QB02302 Q T_c Nm 0.36 0.68 0.98 0.98 0.11 0.155 0.11 0.155 0.121 0.155 0.121 0.155 0.94 1.14 1.22 0.155 0.94 1.14 1.22 0.155 0.94 1.13 0.94 0.94 1.13 0.94 0.98 1.59 0.96 0.98 1.59 0.96 0.98 1.59 0.96 0.98 0.98 1.59 0.96 0.98 0.98 1.59 0.96 0.98 0.99 0.036 0.99 0.036 0.99 0.036 0.99 0.036 0.99 0.036 0.99 0.036 0.99 0.036 0.99 0.036 0.99 0.036 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 1.17 0.99 0.</th> <th>SYMBOL UNIT QB02300 QB02301 QB02302 QB02302 QB02302 T_c Nm 0.36 0.68 0.98 1.28 T_c Nm 0.394 7.9 1118 156 K_w Nm/VW 0.076 0.121 0.155 0.181 T_e msec 0.94 1.14 1.22 1.25 T_w msec 1.30 1.03 0.94 0.92 TFR Nm/rpm 2.5E-6 5.3E-6 7.9E-6 1.1E-5 Nm 0.018 0.029 0.036 0.044 Stants 1.5E-5 2.3E-5 3.0E-5 J_u Kg.m² 7.6E-6 1.5E-5 2.3E-5 3.0E-5 J_u Kg.m² 7.9E-6 1.5E-5 2.3E-5 3.0E-5 Vit Kg 0.68 0.92 1.17 1.42 - 6 6 6 6 6 Ots A B C</th>	SYMBOL UNIT QB02300 QB02301 Q T _c Nm 0.36 0.68 T _R Nm 3.94 7.9 K _M Nm/W 0.076 0.121 T _E msec 0.94 1.14 T _M msec 1.30 1.03 TFR Nm/rpm 2.5E-6 5.3E-6 Fi Nm/rpm 2.5E-6 5.3E-6 T _F Nm 0.018 0.029 Stants J _M Kg.m ² 7.6E-6 1.5E-5 Wt Kg 0.68 0.92 - - 6 6 Ots A B C A B C V _p Volts 24 40 130 24 16 T _p Nm 364 3.94 3014 366 0.076	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SYMBOL UNIT QB02300 QB02301 QB02302 T_c Nm 0.36 0.68 0.98 T_R Nm 3.94 7.9 11.8 Ku Nm/WW 0.076 0.121 0.155 T_E msec 0.94 1.14 1.22 T_u msec 1.30 1.03 0.94 TPR °C/Watt 2.79 2.00 1.59 F_i Nm/rpm 2.5E-6 5.3E-6 7.9E-6 T_F Nm 0.018 0.029 0.036 Stants 7.9E-6 1.5E-5 2.3E-5 Wt Kg m² 0.038 0.48 0.92 1.17 - - 6 6 6 6 6 Vp	SYMBOL UNIT QB02300 QB02301 QB02302 Q T_c Nm 0.36 0.68 0.98 0.98 0.11 0.155 0.11 0.155 0.121 0.155 0.121 0.155 0.94 1.14 1.22 0.155 0.94 1.14 1.22 0.155 0.94 1.13 0.94 0.94 1.13 0.94 0.98 1.59 0.96 0.98 1.59 0.96 0.98 1.59 0.96 0.98 0.98 1.59 0.96 0.98 0.98 1.59 0.96 0.98 0.99 0.036 0.99 0.036 0.99 0.036 0.99 0.036 0.99 0.036 0.99 0.036 0.99 0.036 0.99 0.036 0.99 0.036 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 1.17 0.99 0.	SYMBOL UNIT QB02300 QB02301 QB02302 QB02302 QB02302 T_c Nm 0.36 0.68 0.98 1.28 T_c Nm 0.394 7.9 1118 156 K_w Nm/VW 0.076 0.121 0.155 0.181 T_e msec 0.94 1.14 1.22 1.25 T_w msec 1.30 1.03 0.94 0.92 TFR Nm/rpm 2.5E-6 5.3E-6 7.9E-6 1.1E-5 Nm 0.018 0.029 0.036 0.044 Stants 1.5E-5 2.3E-5 3.0E-5 J_u Kg.m² 7.6E-6 1.5E-5 2.3E-5 3.0E-5 J_u Kg.m² 7.9E-6 1.5E-5 2.3E-5 3.0E-5 Vit Kg 0.68 0.92 1.17 1.42 - 6 6 6 6 6 Ots A B C	

Speed/Torque Curves

Continuous Duty Speed/Torque Curves for 100°C Temperature rise.

The continuous duty speed/torque curves provide a guide to the operational capability of the motors. Continuous operation at a loadpoint on or under the curve limits the temperature rise of the motor to 100°C. Although the duration of acceleration or deceleration periods should be checked, the RMS speed and torque combination should also lie on or under the continuous duty curve. The curves assume housed motors mounted to a nominal size of aluminum heatsink in a 25°C ambient environment and still air cooling. Higher ambient temperatures will generally decrease the continuous duty capability of a motor. With increased heatsink areas or improved cooling such as forced air or water, the continuous duty capability of the motor may be increased. However, for most applications, the practical maximum motor temperature is 150°C with Hall effect

Quantum Series

Size 34

Electrical and Mechanical Data

SYMBOL	UNIT	QB03400			Q	QB03401			B0340)2	QB03403			
T _c T _R K _M T ^E TPR F _i T _F	Nm Nm/√W msec msec °C/Watt Nm/rpm Nm	0.81 5.38 0.142 1.89 2.59 1.87 5.1E-6 0.025			1.57 10.8 0.245 2.57 1.74 1.51 1.0E-5 0.035			2.32 16.2 0.316 2.78 1.57 1.15 1.6E-5 0.046						
Mechanical Constants														
J _M Wt J _M Wt	Kg.m ² Kg Kg.m ² Kg -		5.2E-5 0.60 5.3E-5 1.55 6			1.0E-4 1.17 1.0E-4 2.24 6			1.5E-4 1.73 1.5E-4 2.92 6			2.1E-4 2.29 2.1E-4 3.6 6		
nts		А	в	с	А	в	с	А	в	с	А	в	с	
V _P T _P K _T S _{NL} К _В	Volts Nm Amperes Nm/A RPM Rad/s V/KRPM V/rad/s Ohms	24 5.00 51 0.098 2367 247 10.1 0.097 0.46	40 5.38 49 0.109 3499 366 11.4 0.109 0.58	130 5.38 34 0.154 8037 841 16.1 0.154 1.17	24 10.8 81 0.133 1722 180 13.9 0.133 0.29	40 10.8 65 0.166 2286 240 17.4 0.166 0.46	130 10.8 40 0.266 4665 488 27.8 0.266 1.24	24 14.7 91 0.162 1413 148 16.9 0.162 0.26 0.26	40 16.2 81 0.200 1913 200 20.9 0.200 0.40	130 16.2 51 0.318 3802 408 33.3 0.318 1.03	24 17.7 96 0.184 1244 130 19.2 0.184 0.24	40 21.1 100 0.208 1835 192 21.7 0.208 0.31	130 20.9 74 0.280 4430 464 29.3 0.280 0.56	
	Symbol T _c T _R T _P T _P F _i T _F Stants J _M Wt J _M Wt J _M Wt V _P T _P I _P K _T S _{NL} K _B R _M	$\begin{tabular}{ c c c c } \hline SYMBOL & UNIT \\ \hline T_{R} & Nm \\ & Nm \\ & Nm / W \\ \hline T_{R} & nsec \\ & msec \\ \hline T_{M} & msec \\ \hline TPR & °C/Watt \\ \hline F_{i} & Nm/rpm \\ \hline T_{F} & Nm \\ \hline Stants \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \\ \hline \\$	SYMBOL UNIT Q T _c Nm Transc Nm/Transc T _R Nm KM Nm/W/W Term msec Transc TPR °C/Watt Fr Fr Nm/rpm Nm Stants J Kg.m² Wt Kg Kg.m² Vt Kg Stants Stants Amperes Stants Stants Stants Amperes Vr Kg.m² V Vg Volts 24 Tp Nm 5.00 Ip Amperes 51 Kr Nm/A 0.098 Snut RPM 2367 Rad/s 247 V/rad/s 0.097 Km Ohms 0.46 0.097	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c } \hline SYMBOL UNIT & QB03400 \\ \hline T_c & Nm & 0.81 \\ T_R & Nm & 5.38 \\ K_M & Nm/VW & 0.142 \\ T & msec & 1.89 \\ T_M & msec & 2.59 \\ \hline TPR & ^{\circ}C/Watt & 1.87 \\ F_i & Nm/rpm & 5.1E-6 \\ T_F & Nm' & 0.025 \\ \hline \hline Stants & & & & & & & \\ \hline Mt & Kg.m^2 & 5.2E-5 \\ Wt & Kg & 0.60 \\ J_M & Kg.m^2 & 5.3E-5 \\ Wt & Kg & 0.60 \\ J_M & Kg.m^2 & 5.3E-5 \\ \hline \hline ts & A & B & C \\ \hline \hline ts & A & B & C \\ \hline V_p & Volts & 24 & 40 & 130 \\ T_p & Nm & 5.00 & 5.38 & 5.38 \\ I_p & Amperes & 51 & 49 & 34 \\ K_T & Nm/R & 2367 & 3499 & 8037 \\ Rad/s & 247 & 366 & 841 \\ K_8 & V/KRPM & 10.1 & 11.4 & 161 \\ V/rad/s & 0.097 & 0.109 & 0.154 \\ R_M & Ohms & 0.46 & 0.58 & 1.17 \\ \hline \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SYMBOL UNIT QB03400 QB03400 T _c Nm 0.81 1.57 T _R Nm 5.38 10.8 K _M Nm/VW 0.142 0.245 T _E msec 2.59 1.74 TPR °C/Watt 1.87 1.51 F _i Nm/rpm 5.1E-6 1.0E-5 T _F Nm 0.025 0.035 Stants J _M Kg.m ² 5.2E-5 1.0E-4 Wt Kg 0.60 1.17 J _M Kg.m ² 5.3E-5 1.0E-4 Wt Kg 0.53 2.24 - - 6 6 tts A B C A B V _p Volts 24 40 130 24 40 T _p Nm 5.00 5.38 5.38 10.8 10.8 I _p Amperes 51 49 <t< th=""><th>SYMBOL UNIT QB03400 QB03401 T_c Nm 0.81 1.57 T_R Nm 5.38 10.8 K_M Nm/VW 0.142 0.245 T_E msec 2.59 1.74 TPR °C/Watt 1.87 1.51 F, Nm/rpm 5.1E-6 1.0E-5 T_F Nm 0.025 0.035 Stants 1.55 2.24 J_M Kg.m² 5.2E-5 1.0E-4 Vt Kg 0.600 1.17 J_M Kg.m² 5.2E-5 1.0E-4 Vt Kg 0.600 1.17 J_M Kg.m² 5.2E-5 1.0E-4 Vt Kg 0.600 1.17 J_M Kg.m² 5.3E-5 1.0E-4 Vt Kg 1.55 2.24 - 6 6 6 tts A B C A<th>SYMBOL UNIT QB03400 QB03401 Q T_c Nm 0.81 1.57 Q Q T_R Nm 5.38 10.8 Q Q T_R Nm 5.38 10.8 Q Q T_E msec 1.89 2.57 Q Q T_K msec 2.59 1.74 Q Q TPR °C/Watt 1.87 1.51 Q Q Q T_F Nm/rpm 5.1E-6 1.0E-5 0.035 Q</th><th>SYMBOL UNIT QB03400 QB03401 QB03401 T_c Nm 0.81 1.57 2.32 T_R Nm 5.38 10.8 162 K_M Nm/VW 0.142 0.245 0.316 T_g msec 2.59 1.74 1.57 T_M msec 2.59 1.74 1.57 TPR °C/Watt 1.87 1.51 1.15 T_F Nm/rpm 5.1E-6 1.0E-5 0.035 0.046 Stants J J_M Kg.m² 5.2E-5 1.0E-4 1.5E-4 J_M Kg.m² 5.3E-5 1.0E-4 1.5E-4 J_M Kg.m² 5.3E-5 1.0E-4 1.5E-4 J_M Kg.m² 5.3E-5 2.24 2.32 - 6 6 6 6 tts A B C A B C A B V_p<th>SYMBOL UNIT QB03400 QB03401 QB03402 T_c Nm 0.81 1.57 2.32 T_q Nm 5.38 10.8 162 K_M Nm/W 0.142 0.245 0.316 T_e msec 2.59 1.74 1.57 T_R Nm/vom 5.1E-6 1.0E-5 1.6E-5 Nm/rom 5.1E-6 1.0E-5 1.6E-5 0.046 Stants 0.025 0.035 0.046 0.046 Stants - - - - - J_M Kg.m² 5.2E-5 1.0E-4 1.5E-4 1.5E-4 Wt Kg 1.55 2.24 2.92 - - - 6 6 6 6 - Vr Vdt Kg 1.55 2.24 2.92 - - - 6 6 6 6 6 6 Vr Volts</th><th>SYMBOL UNIT QB03400 QB03401 QB03402 Q T_c Nm 0.81 1.57 2.32</th><th>SYMBOL UNIT OB03400 QB03401 QB03402 QB03402 QB03401 T_c Nm 0.81 1.57 2.32 3.03 T_k Nm 5.38 10.8 16.2 2.09 Mm 5.38 0.245 0.316 0.366 0.369 T_k msec 1.89 2.57 2.78 2.237 1.53 TPR "CWatt 1.87 1.51 1.15 0.92 2.275 TFR "CWatt 1.87 1.51 1.15 0.92 2.275 TPR "CWatt 1.87 1.51 1.155 2.225 2.225 Nm 0.025 0.035 0.046 0.066 0.056 Stants - - 6 6 6 6 6 Stants 1.55 2.24 2.92 3.6 6 6 6 6 Stants 1.05 2.24 2.92 3.6 6 6 <t< th=""></t<></th></th></th></t<>	SYMBOL UNIT QB03400 QB03401 T _c Nm 0.81 1.57 T _R Nm 5.38 10.8 K _M Nm/VW 0.142 0.245 T _E msec 2.59 1.74 TPR °C/Watt 1.87 1.51 F, Nm/rpm 5.1E-6 1.0E-5 T _F Nm 0.025 0.035 Stants 1.55 2.24 J _M Kg.m ² 5.2E-5 1.0E-4 Vt Kg 0.600 1.17 J _M Kg.m ² 5.2E-5 1.0E-4 Vt Kg 0.600 1.17 J _M Kg.m ² 5.2E-5 1.0E-4 Vt Kg 0.600 1.17 J _M Kg.m ² 5.3E-5 1.0E-4 Vt Kg 1.55 2.24 - 6 6 6 tts A B C A <th>SYMBOL UNIT QB03400 QB03401 Q T_c Nm 0.81 1.57 Q Q T_R Nm 5.38 10.8 Q Q T_R Nm 5.38 10.8 Q Q T_E msec 1.89 2.57 Q Q T_K msec 2.59 1.74 Q Q TPR °C/Watt 1.87 1.51 Q Q Q T_F Nm/rpm 5.1E-6 1.0E-5 0.035 Q</th> <th>SYMBOL UNIT QB03400 QB03401 QB03401 T_c Nm 0.81 1.57 2.32 T_R Nm 5.38 10.8 162 K_M Nm/VW 0.142 0.245 0.316 T_g msec 2.59 1.74 1.57 T_M msec 2.59 1.74 1.57 TPR °C/Watt 1.87 1.51 1.15 T_F Nm/rpm 5.1E-6 1.0E-5 0.035 0.046 Stants J J_M Kg.m² 5.2E-5 1.0E-4 1.5E-4 J_M Kg.m² 5.3E-5 1.0E-4 1.5E-4 J_M Kg.m² 5.3E-5 1.0E-4 1.5E-4 J_M Kg.m² 5.3E-5 2.24 2.32 - 6 6 6 6 tts A B C A B C A B V_p<th>SYMBOL UNIT QB03400 QB03401 QB03402 T_c Nm 0.81 1.57 2.32 T_q Nm 5.38 10.8 162 K_M Nm/W 0.142 0.245 0.316 T_e msec 2.59 1.74 1.57 T_R Nm/vom 5.1E-6 1.0E-5 1.6E-5 Nm/rom 5.1E-6 1.0E-5 1.6E-5 0.046 Stants 0.025 0.035 0.046 0.046 Stants - - - - - J_M Kg.m² 5.2E-5 1.0E-4 1.5E-4 1.5E-4 Wt Kg 1.55 2.24 2.92 - - - 6 6 6 6 - Vr Vdt Kg 1.55 2.24 2.92 - - - 6 6 6 6 6 6 Vr Volts</th><th>SYMBOL UNIT QB03400 QB03401 QB03402 Q T_c Nm 0.81 1.57 2.32</th><th>SYMBOL UNIT OB03400 QB03401 QB03402 QB03402 QB03401 T_c Nm 0.81 1.57 2.32 3.03 T_k Nm 5.38 10.8 16.2 2.09 Mm 5.38 0.245 0.316 0.366 0.369 T_k msec 1.89 2.57 2.78 2.237 1.53 TPR "CWatt 1.87 1.51 1.15 0.92 2.275 TFR "CWatt 1.87 1.51 1.15 0.92 2.275 TPR "CWatt 1.87 1.51 1.155 2.225 2.225 Nm 0.025 0.035 0.046 0.066 0.056 Stants - - 6 6 6 6 6 Stants 1.55 2.24 2.92 3.6 6 6 6 6 Stants 1.05 2.24 2.92 3.6 6 6 <t< th=""></t<></th></th>	SYMBOL UNIT QB03400 QB03401 Q T_c Nm 0.81 1.57 Q Q T_R Nm 5.38 10.8 Q Q T_R Nm 5.38 10.8 Q Q T_E msec 1.89 2.57 Q Q T_K msec 2.59 1.74 Q Q TPR °C/Watt 1.87 1.51 Q Q Q T_F Nm/rpm 5.1E-6 1.0E-5 0.035 Q	SYMBOL UNIT QB03400 QB03401 QB03401 T _c Nm 0.81 1.57 2.32 T _R Nm 5.38 10.8 162 K _M Nm/VW 0.142 0.245 0.316 T _g msec 2.59 1.74 1.57 T _M msec 2.59 1.74 1.57 TPR °C/Watt 1.87 1.51 1.15 T _F Nm/rpm 5.1E-6 1.0E-5 0.035 0.046 Stants J J _M Kg.m ² 5.2E-5 1.0E-4 1.5E-4 J _M Kg.m ² 5.3E-5 1.0E-4 1.5E-4 J _M Kg.m ² 5.3E-5 1.0E-4 1.5E-4 J _M Kg.m ² 5.3E-5 2.24 2.32 - 6 6 6 6 tts A B C A B C A B V _p <th>SYMBOL UNIT QB03400 QB03401 QB03402 T_c Nm 0.81 1.57 2.32 T_q Nm 5.38 10.8 162 K_M Nm/W 0.142 0.245 0.316 T_e msec 2.59 1.74 1.57 T_R Nm/vom 5.1E-6 1.0E-5 1.6E-5 Nm/rom 5.1E-6 1.0E-5 1.6E-5 0.046 Stants 0.025 0.035 0.046 0.046 Stants - - - - - J_M Kg.m² 5.2E-5 1.0E-4 1.5E-4 1.5E-4 Wt Kg 1.55 2.24 2.92 - - - 6 6 6 6 - Vr Vdt Kg 1.55 2.24 2.92 - - - 6 6 6 6 6 6 Vr Volts</th> <th>SYMBOL UNIT QB03400 QB03401 QB03402 Q T_c Nm 0.81 1.57 2.32</th> <th>SYMBOL UNIT OB03400 QB03401 QB03402 QB03402 QB03401 T_c Nm 0.81 1.57 2.32 3.03 T_k Nm 5.38 10.8 16.2 2.09 Mm 5.38 0.245 0.316 0.366 0.369 T_k msec 1.89 2.57 2.78 2.237 1.53 TPR "CWatt 1.87 1.51 1.15 0.92 2.275 TFR "CWatt 1.87 1.51 1.15 0.92 2.275 TPR "CWatt 1.87 1.51 1.155 2.225 2.225 Nm 0.025 0.035 0.046 0.066 0.056 Stants - - 6 6 6 6 6 Stants 1.55 2.24 2.92 3.6 6 6 6 6 Stants 1.05 2.24 2.92 3.6 6 6 <t< th=""></t<></th>	SYMBOL UNIT QB03400 QB03401 QB03402 T_c Nm 0.81 1.57 2.32 T_q Nm 5.38 10.8 162 K_M Nm/W 0.142 0.245 0.316 T_e msec 2.59 1.74 1.57 T_R Nm/vom 5.1E-6 1.0E-5 1.6E-5 Nm/rom 5.1E-6 1.0E-5 1.6E-5 0.046 Stants 0.025 0.035 0.046 0.046 Stants - - - - - J_M Kg.m² 5.2E-5 1.0E-4 1.5E-4 1.5E-4 Wt Kg 1.55 2.24 2.92 - - - 6 6 6 6 - Vr Vdt Kg 1.55 2.24 2.92 - - - 6 6 6 6 6 6 Vr Volts	SYMBOL UNIT QB03400 QB03401 QB03402 Q T_c Nm 0.81 1.57 2.32	SYMBOL UNIT OB03400 QB03401 QB03402 QB03402 QB03401 T_c Nm 0.81 1.57 2.32 3.03 T_k Nm 5.38 10.8 16.2 2.09 Mm 5.38 0.245 0.316 0.366 0.369 T_k msec 1.89 2.57 2.78 2.237 1.53 TPR "CWatt 1.87 1.51 1.15 0.92 2.275 TFR "CWatt 1.87 1.51 1.15 0.92 2.275 TPR "CWatt 1.87 1.51 1.155 2.225 2.225 Nm 0.025 0.035 0.046 0.066 0.056 Stants - - 6 6 6 6 6 Stants 1.55 2.24 2.92 3.6 6 6 6 6 Stants 1.05 2.24 2.92 3.6 6 6 <t< th=""></t<>	

Speed/Torque Curves

Continuous Duty Speed/Torque Curves for 100°C Temperature rise.

The continuous duty speed/torque curves provide a guide to the operational capability of the motors. Continuous operation at a loadpoint on or under the curve limits the temperature rise of the motor to 100°C. Although the duration of acceleration or deceleration periods should be checked, the RMS speed and torque combination should also lie on or under the continuous duty curve. The curves assume housed motors mounted to a nominal size of aluminum heatsink in a 25°C ambient environment and still air cooling. Higher ambient temperatures will generally decrease the continuous duty capability of a motor. With increased heatsink areas or improved cooling such as forced air or water, the continuous duty capability of the motor may be increased. However, for most applications, the practical maximum motor temperature is 150°C with Hall effect

Housed Motor

Final definition of the housed versions of the QB05600 Series motors had not been completed at the time of printing. Please contact our sales group for the latest information.

Electrical and Mechanical Data

Size Constants	SYMBOL	UNIT	QB05600			QB05601			a	B0560)2	QB05603			
Max Cont. Stall Torque Max Rated Torque, 25% Motor Constant, Electrical Time Constant Mechanical Time Constant Thermal Resistance Viscous Damping Max Cogging Torque	T _c T _R T _E TPR F _i F TPR	Nm Nm/√W msec msec °C/Watt Nm/rpm Nm	4.29 30.3 0.56 5.09 1.13 1.09 2.3E-5 0.078			8.03 57.2 0.88 5.49 0.93 0.75 4.9E-5 0.134			11.10 85.1 1.09 6.59 0.92 1.15 7.5E-5 0.191						
Mechanical Constants															
Frameless Motor Inertia Frameless Motor Weight Housed Motor Inertia Housed Motor Weight Number of Poles	J _M Wt J _M Wt	Kg.m ² Kg Kg.m ² Kg -		3.6E-4 1.72 6.3E-4 4.80 8			7.3E-4 3.99 1.1E-3 7.84 8			1.1E-3 5.84 1.6E-3 10.4 8			1.5E-3 7.76 2.1E-3 13.0 8		
Winding Constar	nts		А	В	с	А	в	с	А	в	с	А	в	с	
Design Voltage Peak Torque Peak Current Torque Constant,±10% No Load Speed BEMF Constant, ±10% Terminal Resistance, ±12% Terminal Inductance, ±30%	V _P T _P K _T S _{NL} K _B R _M	Volts Nm Amperes Nm/A RPM Rad/s V/KRPM V/rad/s Ohms mH	40 30.3 224 0.135 2830 296 14.3 0.135 0.056 0.287	130 30.3 121 0.250 4971 520 26.1 0.250 0.196 0.981	300 30.3 62 0.486 5896 617 50.8 0.486 0.761 3.715	40 59.2 409 0.145 2634 275 15.1 0.145 0.027 0.146	130 59.2 204 0.290 4281 448 30.3 0.290 0.107 0.586	300 59.2 93 0.633 4528 474 66.2 0.633 0.511 2.788	40 85.1 498 0.171 2235 234 17.8 0.171 0.024 0.160	130 85.1 263 0.323 3847 402 33.8 0.323 0.085 0.570	300 85.1 124 0.683 4192 439 71.5 0.683 0.400 2.556	40 113.5 640 0.177 2156 225 18.5 0.177 0.019 0.127	130 113.5 299 0.380 3270 342 39.7 0.380 0.088 0.585	300 113.5 154 0.734 3903 408 76.8 0.734 0.324 2.187	

Speed/Torque Curves

Continuous Duty Speed/Torque Curves for 100°C Temperature rise.

The continuous duty speed/torque curves provide a guide to the operational capability of the motors. Continuous operation at a loadpoint on or under the curve limits the temperature rise of the motor to 100°C. Although the duration of acceleration or deceleration periods should be checked, the RMS speed and torque combination should also lie on or under the continuous duty curve. The curves assume housed motors mounted to a nominal size of aluminum heatsink in a 25°C ambient environment and still air cooling. Higher ambient temperatures will generally decrease the continuous duty capability of a motor. With increased heatsink areas or improved cooling such as forced air or water, the continuous duty capability of the motor may be increased. However, for most applications, the practical maximum motor temperature is 150°C with Hall effect

QB Series QS High Efficiency

QS01700

QS02300

QS03400

QS High Efficiency Motors

The QS versions of the Quantum Series of motors, are designed for increased operating efficiency at higher speeds. This is accomplished by the use of thinner, low core loss, lamination material. The result is that for a given temperature rise, the motor can operate at higher speed while still producing useful amounts of output torque compared to the standard Quantum Series motors (QB) that are optimized for servo perfomance at lower operating speeds.

The mechanical dimensions of the QS motors remain the same as the QB versions. Except for the Viscous Damping and Hysteresis Drag torque, the datasheet parameters for Size and Winding constants remain the same.

For loadpoints beyond those shown on the accompanying graphs, we can further optimize the magnetic circuit designs through geometry and material changes.

Additionally, windings which are optimized for a specific

QS05600

OB Series Bearing Life Curves

QB/QS01700

QB/QS02300

QB/QS03400

Calculations for life rating of 20,000 hours is based upon combined radial and axial loads. Radial load applied 0.50 inches (12.7mm) from mounting face. 10 lb (44N) maximum axial preload. 8 mm ID bearing available.

Calculations for life rating of 20,000 hours is based upon combined radial and axial loads. Radial load applied 0.50 inches (12.7mm) from mounting face. 15 lb (66N) maximum axial preload. 0.5 inch ID bearing available. 0.250 inch shaft option utilizes 0.375 inch ID bearings

Calculations for life rating of 20,000 hours is based upon combined radial and axial loads. Radial load applied 0.75 inches (19mm) from mounting face. 20 lb (88N) maximum axial preload.

0.375 inch shaft utilizes 0.500 inch ID bearing 0.625 inch ID bearing available.

QB Series Encoders

QB/QS01700 Series

QB Series

Rugged Housings

QB Series Rugged Housings

QB/QS02300 Series

QB Series Rugged Housings

QB/QS03400 Series

QB Series

Mating Connectors

QB/QS01700 Series

QB Series

Brakes & Resolvers

Holding Brake Options

Page reserved for future use.

QB Series Glossary

Size Constants

These parameters are dependent upon the size and shape of the motor but are largely independent of the winding used. However, special designs incorporating different lamination and magnet materials as well as design modifications such as increased magnetic air gaps can change these parameters. In such instances, a specific set of design data will be provided.

Maximum Continuous Stall Torque (T_c) is the amount of torque produced at zero speed which results in a 100°C rise in temperature. Generally, the highest operating temperature that should be allowed is 150°C and is a combination of the ambient temperature and the temperature rise for a given operating condition.

Maximum Rated Torque (T_R) is the amount of torque that the motor can produce without danger of demagnetizing the rotor. This torque is only available for short durations. Also, it may not be possible to produce the Maximum Rated Torque because of limitations of voltage and current (see Peak Torque).

Motor Constant (K_M) is the ratio of the peak torque to the square root of the input power at stall with 25° C ambient temperature. This ratio is useful during the initial selection of a motor because it indicates the ability of the motor to convert electrical power into torque.

$$\begin{split} & \mathsf{K}_{_{\mathsf{M}}} = \mathsf{T}_{_{\mathsf{P}}}(\text{Peak Torque}) / \sqrt{\mathsf{P}_{_{\mathsf{P}}}} \text{ (Peak Input Power)} \\ & \text{or} \\ & \mathsf{K}_{_{\mathsf{M}}} = \mathsf{K}_{_{\mathsf{T}}} \text{ (Torque Constant)} / \sqrt{\mathsf{R}_{_{\mathsf{M}}}} \text{ (Terminal Resistance)} \end{split}$$

Electrical Time Constant (t_F) is the ratio of inductance L_M in Henries, to the resistance R_M in Ohms. This is the inductance and resistance as measured across any two phases in a delta or wye configuration.

 $T_E = L_M/R_M$

Mechanical Time Constant (t_M) is the time required to reach 63.2% of the motors maximum speed after the application of constant DC voltage through the commutation electronics, ignoring friction, windage, and core losses.

 $\mathsf{T}_{_{\mathsf{M}}}=\mathsf{J}_{_{\mathsf{M}}}*\mathsf{R}_{_{\mathsf{M}}}/\mathsf{K}_{_{\mathsf{T}}}*\mathsf{K}_{_{\mathsf{B}}}$

Thermal Resistance (TPR) correlates winding temperature rise to the average power dissipated in the stator winding. The published TPR assumes that a housed motor is mounted to an aluminum heatsink of specific dimensions. Additional cooling from forced air, water jacketing, or increased heatsinking decreases the motor Thermal Resistance allowing higher power outputs than the published data.

Heatsink Sizes:

QB01700 Series 6 x 6 x 0.25 inches (152x152x6.3 mm) QB02300 Series 8 x 8 x 0.25 inches (203x203x6.3 mm) QB03400 Series 10x10x0.25 inches (254x254x6.3 mm) QB05600 Series 12x12x0.50 inches (305x305x12.7mm)

Viscous Damping (F₀) gives an indication of the torque lost due to B.E.M.F. in the motor when the source impedance is zero. F_0 value can be represented as $F_0 = K_T * K_B / R_M$

Maximum Cogging Torque (T_F) is principally the static friction torque felt as the motor is rotated at low speed. The published value does not include the bearing friction of a housed motor.

Mechanical Data

Rotor inertia (J_{M}) is the moment of inertia of the rotor about its axis of rotation.

Motor Weight (W_{M}) is the weight of the standard motor.

Number of Poles (N_p) is the number of permanent magnet poles of the rotor. For the QB Series this is generally a total of six (three north and three south).

Winding Constants

The winding constants are the parameters that vary with the number of wire turns per coil and the wire size. These parameters are collected under a alphabetical winding designation. A single frame size and length of motor will have several different windings. Special windings receive new designations in the sequence by which they are designed and released to production.

Design Voltage (V_p) is the nominal voltage required to produce the peak torque when the rotor speed is zero and the winding temperature is 25°C. As such, V_p is the product of I_p and R_M. At any temperature greater than 25°C, the required voltage to produce peak torque increases due to the increase in winding resistance. The

QB Series Connections

design voltage is \underline{not} a limit but a reference point for the data.

Peak Torque (T_p) is the nominal value of developed torque with the rated current I_p applied to the windings. For each winding specified the product of peak current (I_p) and nominal torque sensitivity (K_T) gives T_p unless the maximum rated torque (T_p) is reached.

Peak Current (I_P) is the rated current used to obtain the nominal peak torque from the motor with nominal torque sensitivity (K_T). I_P is generally the design voltage divided by the terminal resistance (R_M).

Torque Sensitivity (K_T) is the ratio of the developed torque to the applied current for a specific winding. K_T is related to the BEMF Constant K_R.

No Load Speed (S_{NL}) is the theoretical no load speed of the motor with the design voltage applied.

BEMF Constant (K_B) is the ratio of voltage generated in the winding to the speed of the rotor. K_B is proportional to K_T

Terminal Resistance (R_M) is the winding resistance measured between any two leads of the winding in either a delta or wye configuration at 25° C.

Terminal Inductance (L_M) is the winding inductance measured between any two leads of the winding in either delta or wye configuration at 25° C.

Configuration Drawings

The drawings reflect the standard configurations for both the housed and frameless motors. Encoder and housing options are also detailed but customers may specify mechanical modifications such as shaft diameters and lengths as well as special mounting and cabling requirements.

Frameless motors are supplied with single stack rotor hubs for customer stacking to required rotor length. The Hall effects are integral to the stator assembly.

Motor Connections and Commutation Logic

MOTOR EXCITATION SEQUENCE AND SENSOR OUTPUT LOGIC FOR CW ROTATION VIEWING LEADWIRE END.

2.7K OHMS

2.7K OHMS

(PROVIDED WITH EMOTEQ DRIVERS)

GND

ORANGE

C YELLOW

SENSOR ASSEMBLY

GREEN

USER

В

Quantum Series Brushless DC Motors

MOTION UNDER CONTROL